Abstract
Observing social/physical distancing norms between humans has become an indispensable precaution to slow down the transmission of COVID-19. We present a novel method to automatically detect pairs of humans in a crowded scenario who are not maintaining social distancing, i.e. about 2 meters of space between them using an autonomous mobile robot and existing CCTV (Closed-Circuit TeleVision) cameras. The robot is equipped with commodity sensors, namely an RGB-D (Red Green Blue—Depth) camera and a 2-D lidar to detect social distancing breaches within their sensing range and navigate towards the location of the breach. Moreover, it discreetly alerts the relevant people to move apart by using a mounted display. In addition, we also equip the robot with a thermal camera that transmits thermal images to security/healthcare personnel who monitors COVID symptoms such as a fever. In indoor scenarios, we integrate the mobile robot setup with a static wall-mounted CCTV camera to further improve the number of social distancing breaches detected, accurately pursuing walking groups of people etc. We highlight the performance benefits of our robot + CCTV approach in different static and dynamic indoor scenarios.
Paper
COVID surveillance robot: Monitoring social distancing constraints in indoor scenarios, PLOS ONE 2021.
Adarsh Jagan Sathyamoorthy, Utsav Patel, Moumita Paul, Yash Savle,Dinesh Manocha
Video