GANav: Efficient Terrain Segmentation for Robot Navigation in Unstructured Outdoor Environments


Abstract

We propose GANav, a novel group-wise attention mechanism to identify safe and navigable regions in off-road terrains and unstructured environments from RGB images. Our approach classifies terrains based on their navigability levels using coarse-grained semantic segmentation. Our novel group-wise attention loss enables any backbone network to explicitly focus on the different groups' features with low spatial resolution. Our design leads to efficient inference while maintaining a high level of accuracy compared to existing SOTA methods. Our extensive evaluations on the RUGD and RELLIS-3D datasets shows that GANav achieves an improvement over the SOTA mIoU by 2.25-39.05% on RUGD and 5.17-19.06% on RELLIS-3D. We interface GANav with a deep reinforcement learning-based navigation algorithm and highlight its benefits in terms of navigation in real-world unstructured terrains. We integrate our GANav-based navigation algorithm with ClearPath Jackal and Husky robots, and observe an increase of 10% in terms of success rate, 2-47% in terms of selecting the surface with the best navigability and a decrease of 4.6-13.9% in trajectory roughness. Further, GANav reduces the false positive rate of forbidden regions by 37.79%. Code, videos, and a full technical report are available at https://gamma.umd.edu/offroad/.
Code Dataset Tech Report
Github RUGD/RELLIS-3D Tech Report

Video

Please cite our work if you found it useful,

@ARTICLE{9810192,
  author={Guan, Tianrui and Kothandaraman, Divya and Chandra, Rohan and Sathyamoorthy, Adarsh Jagan and Weerakoon, Kasun and Manocha, Dinesh},
  journal={IEEE Robotics and Automation Letters}, 
  title={GA-Nav: Efficient Terrain Segmentation for Robot Navigation in Unstructured Outdoor Environments}, 
  year={2022},
  volume={7},
  number={3},
  pages={8138-8145},
  doi={10.1109/LRA.2022.3187278}}