Emotion-Based Crowd Simulation Model Based on Physical Strength Consumption for Emergency Scenarios


Increasing attention is being given to the modeling and simulation of traffic flow and crowd movement, two phenomena that both deal with interactions between pedestrians and cars in many situations. In particular, crowd simulation is important for understanding mobility and transportation patterns. In this paper, we propose an emotion-based crowd simulation model integrating physical strength consumption. Inspired by the theory of “the devoted actor,” the movements of each individual in our model are determined by modeling the influence of physical strength consumption and the emotion of panic. In particular, human physical strength consumption is computed using a physics-based numerical method. Inspired by the James-Lange theory, panic levels are estimated by means of an enhanced emotional contagion model that leverages the inherent relationship between physical strength consumption and panic. To the best of our knowledge, our model is the first method integrating physical strength consumption into an emotion-based crowd simulation model by exploiting the relationship between physical strength consumption and emotion. We highlight the performance on different scenarios and compare the resulting behaviors with real-world video sequences. Our approach can reliably predict changes in physical strength consumption and panic levels of individuals in an emergency situation.

IEEE Transactions on Intelligent Transportation Systems, 2020